in situ silica supported metallocene catalysts for ethylene polymerization
Authors
abstract
bis(2-r-ind)zrcl2 (r: h or phenyl) was supported on different types of silica by in situ impregnation method and used for ethylene polymerization. in this method, the step of catalyst loading on support was eliminated and common alkyl aluminum (triisobutylaluminum, tiba) cocatalyst was used instead of expensive methyl aluminiumoxane (mao) cocatalyst in the polymerization. the effect of surface area of silica on the performance of the supported catalysts using three different types of silica including ep12 (390 m2/gr.), pq3060 (570 m2/gr.) and mcm-41 (1100 m2/gr.) was investigated. the surface area had a more critical role relative to other characteristics of the support in the performance of catalysts. by using mcm-41 as support, the kinetic stability was enhanced. the activity of the supported catalysts was increased by increasing the surface area of silica in the order of mcm-41 > pq3060 > ep12. the morphology of polymer particles was improved and reactor fouling was eliminated by supporting the catalyst.
similar resources
IN SITU SILICA SUPPORTED METALLOCENE CATALYSTS FOR ETHYLENE POLYMERIZATION
Bis(2-R-ind)ZrCl2 (R: H or phenyl) was supported on different types of silica by in situ impregnation method and used for ethylene polymerization. In this method, the step of catalyst loading on support was eliminated and common alkyl aluminum (triisobutylaluminum, TiBA) cocatalyst was used instead of expensive methyl aluminiumoxane (MAO) cocatalyst in the polymerization. The effect of surface ...
full textBorane-functionalized silica supports In situ activated heterogeneous zirconocene catalysts for MAO-free ethylene polymerization
We treated silica with tris(pentafluorophenyl)borane, B(C6F5)3, to create borane-functionalized support, SiO2–B(C6F5)3 which was then used as a support and co-catalyst for the in situ activated dichloro-zirconocene (Cp2ZrCl2/TIBA) and dimethyl-zirconocene catalyst systems (Cp2Zr(CH3)2) for ethylene polymerization. The surface modifications of SiO2– B(C6F5)3 was investigated by SEM–EDX, FTIR and...
full textConstrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.
Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This ...
full textIntelligent catalysts for ethylene oligomerization and polymerization
EEthylene polymerization catalysts became available in an enormous variety. The challenge in this research is to find catalysts that are able to connect ethylene molecules in such a way that not only linear chains are produced but variations like branched materials that possess very interesting mechanical properties like linear low density polyethylene (LLDPE). In this contribution, three diffe...
full textImido-modified SiO2-supported Ti/Mg Ziegler-Natta catalysts for ethylene polymerization and ethylene/1-hexene copolymerization
A novel imido-modified SiO2-supported Ti/Mg Ziegler-Natta catalyst for ethylene and ethylene/1-hexene polymerization is investigated. The catalyst is prepared by modification of (SiO2/MgO/MgCl2)TiClx Ziegler-Natta catalysts via supporting vanadium species followed by reaction with p-tolyl isocyanate as imido agents, to get the merits from both the SiO2-supported imido vanadium catalyst and the ...
full textPhillips catalysts synthesized over various silica supports: Characterization and their catalytic evaluation in ethylene polymerization
Ethylene polymerization was carried out using Phillips chromium catalyst based on silica supports such as silica aerogel, SiO2 (Grace 643), and titanium modified SiO2 (G 643), and the results were compared with other catalysts based on SiO2 (Aldrich), SBA-15(Hex), SBA-15(Sp) and MCM-41. A combination of TGA, DSC, XRD, nitrogen adsorption, SEM, ICP, FTIR and other analyses were used to character...
full textMy Resources
Save resource for easier access later
Journal title:
journal of petroleum science and technologyPublisher: research institute of petroleum industry (ripi)
ISSN 2251-659X
volume 4
issue 1 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023